

National Standard Practice Manual for Benefit-Cost Analysis of Distributed Energy Resources (NSPM for DERs)

PROJECT OVERVIEW April 2020

The National Efficiency Screening Project

Overview

- 1. Background Building on the NSPM for EE
- 2. Why an NSPM for DERs?
- 3. Who's Involved?
- 4. Project Schedule
- 5. Scope of Forthcoming Guidance

Universal

Principles

NSPM Principles (being updated

for NSPM for DERs):

NSPM Process

- Recognize that EE (other DER) is a resource.
- Account for applicable policy goals. 2
- 3. Account for all relevant costs & benefits (based on applicable policies), even if hard to quantify.

Primary

Test

Ensure symmetry across all relevant costs and benefits. 4.

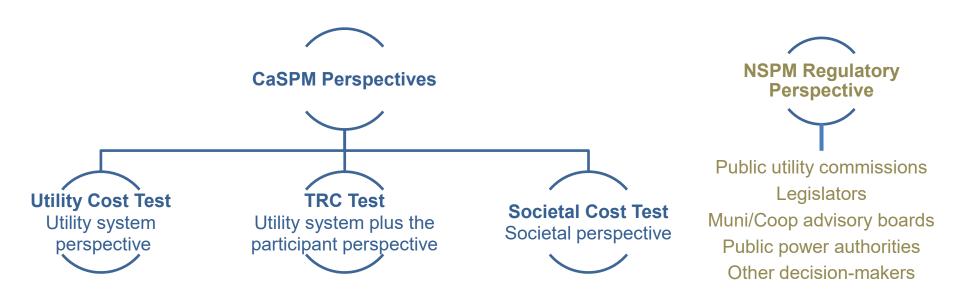
Multi-step

Framework

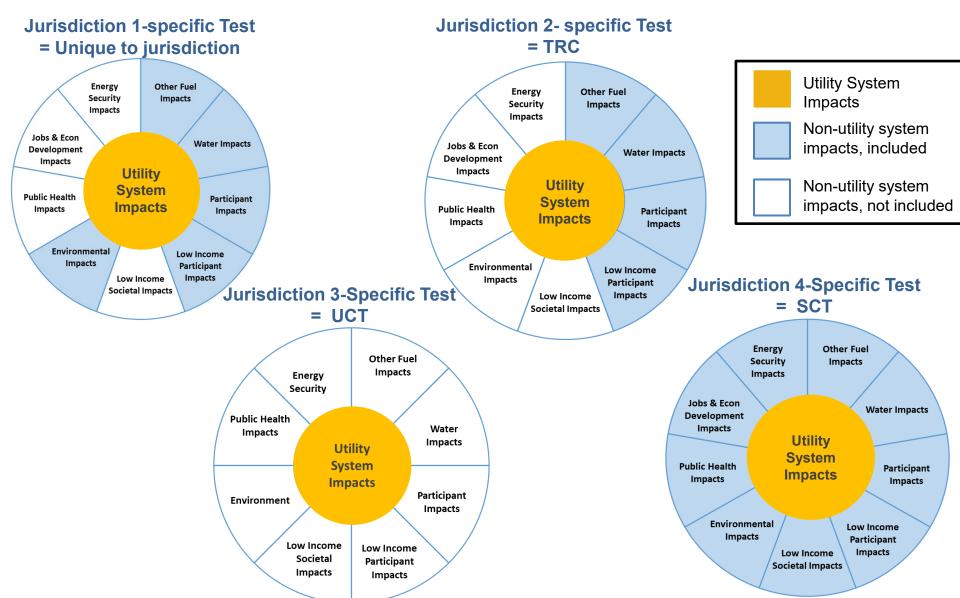
- 5. Conduct a forward-looking, long-term analysis that captures incremental impacts of energy efficiency.
- Ensure transparency in presenting the analysis and the results. 6.

NSPM for EE (May 2017)

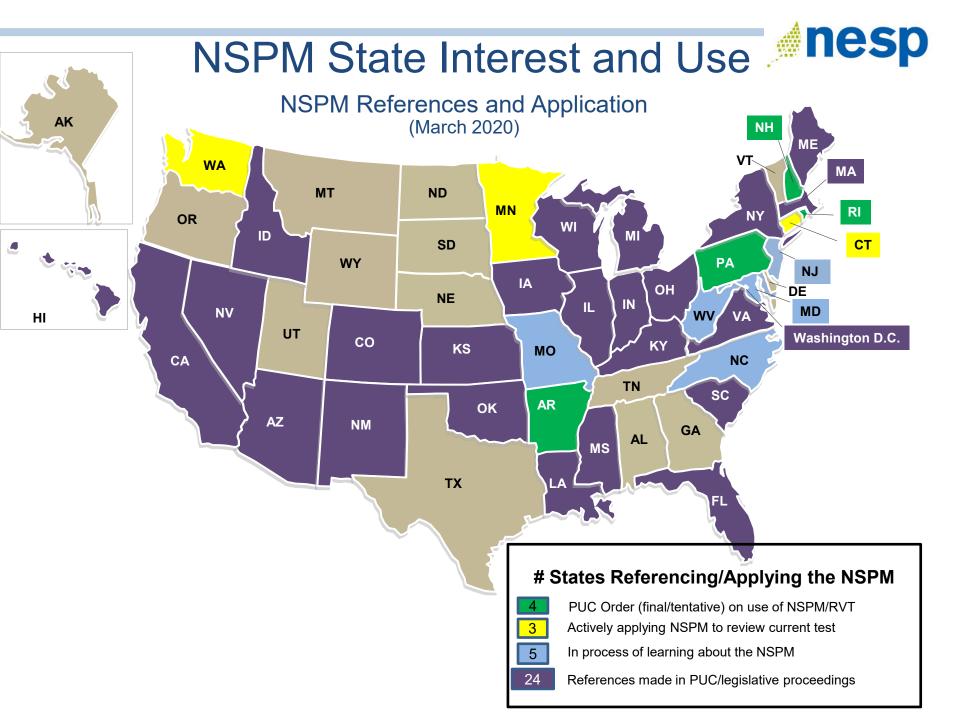
National Standard Practice Manual


for Assessing Cost-Effectiveness of Energy Efficiency Resources

EDITION 1 Spring 2017



Cost-Effectiveness Perspectives



- California Standard Practice Manual (CaSPM) test perspectives are used to define the scope of impacts to include in the 'traditional' cost-effectiveness tests
- NPSM focuses on the 'regulatory' perspective, which is guided by the jurisdiction's energy and other applicable policy goals
- A jurisdiction that applies the NSPM may develop a, or modify its existing, test such that it differs from or may align with any one of the traditional tests, depending on its applicable policies

Primary Test Developed Using the NSPM (Test may be unique to a jurisdiction or could align with a traditional CE test depending on the jurisdiction's applicable policies)

enes

NSPM for DERs

Why an NSPM for DERs, and What Is It?

- Growing interest in DERs as grid resources and in DSP
 - Regulators looking for guidance to support BCA of DERs
- States use different methods, and assumptions for DER BCA
 - Inconsistent treatment of different DERs even within states
- NSPM for DERs serves as a reference document:
 - Principles and framework for assessing DER BCA
 - Policy and resource neutral
 - Conceptually similar to NSPM for EE
 - But significant refinements and additional material
 - Refines NSPM for EE principles and framework
 - Addresses issues/challenges of BCA for each DER type and multi-DER use cases (including on context of non-wires solutions)
 - May address tools/techniques/methods for quantifying DER impacts (contingent on added funding)

NSPM for DERs - Development

- Managed by E4TheFuture
- Funded by E4TheFuture and US DOE (via LBL)
- Multiple co-authors
 - Extensive understanding of regulatory economics
 - Specialized expertise with different DERs
- Advisory Group
 - 45+ individuals
 - Diversity of perspectives
 - Input on Manual outline and drafts
- Leveraging/referencing other work

NSPM for DERs - Project Team

Project Coordinator: Julie Michals – Director of Valuation, E4TheFuture

Project Consultants/Authors: Tim Woolf – Synapse Energy Economics, Lead

Name	Affiliation
Brenda Chew	Smart Electric Power Alliance
Chris Neme	Energy Futures Group
Karl Rabago	Pace Energy Center
Kate Strickland	Smart Electric Power Alliance
Mike Alter	ICF Consulting
Steve Fine	ICF Consulting
Steve Schiller	Schiller Consulting

NSPM for DERs - Advisory Group

Name	Affiliation	Name	Affiliation	
Adam Cooper	Edison Foundation	Kara Podkaminer	US DOE Strgt Priorities & Impact Analy	
Andy Satchwell	Lawrence Berkeley Lab	Kara Saul Rinaldi	Building Performance Assoc	
Beth Conlin	USEPA	Katherine Johnson	Johnson Consulting	
Christopher Budzynski	Exelon Utilities	Kelly Speakes Bachman	Energy Storage Association	
Courtney Welch	Esource	Lauren Gage	Apex Analytics	
Cyrus Bhedwar	Southeast Energy Efficiency Alliance	Maria Schnitzer	National Grid	
Dan Cross-Call	Rocky Mountain Institute	Marty Kushler	American Council for Energy Eff Econ	
Dan Delurey	Wedgemere Group	Michael Goldman	Eversource Energy	
Dan Violette	Lumina	Mohit Chhabra	Natural Resources Defense Counsel	
Dana Lowell	MJ Bradley	Nadav Enbar	Electric Power Research Institute	
Danielle Sass Byrnett	Nat'l Assoc of Regulatory Utility Comm.	Natalie Frick	Lawrence Berkeley Lab	
Deborah Reynolds	WA Utilities and Transp Commission	Nick Dreher	Midwest Energy Efficiency Alliance	
Don Gilligan	Nat'l Assoc. of Energy Service Companies	Olivia Patterson	Opinion Dynamics	
Don Kreis	NH Consumer Advocate	Paula Carmody	Maryland Office of People's Counsel	
Elizabeth Titus	Northeast Energy Efficiency Partnerships	Phil Jones	Alliance for Transp Electrification	
Gregory Dierkers	US DOE - Wx/Intergovt Programs	Ric O'Connell/Taylor McNair	Grid Lab	
Gregory Ehrendreich	Midwest Energy Efficiency Alliance	Rick Gilliam	Vote Solar	
Greg Wikler	CA Efficiency Demand Mgmt Council	Rodney Sobin	Nat'l Assoc of State Energy Officials	
Jack Laverty	Columbia Gas of Ohio	Ryan Chan	PG&E	
Janet Gail Besser	Smart Electric Power Alliance	Ryan Katofsky	Advanced Energy Economy	
Jennifer Morris	Illinois Commerce Commission	Sami Khawaja	Cadmus	
Joe Cullen	Building Performance Assoc	Steven Rymsha	Sunrun	
Johanna Zetterberg	US DOE - EERE	Susan Stratton	Northwest Energy Efficiency Alliance	
John Agan	US DOE - Wx/Intergovt Programs	Todd Bianco	RI Public Utilities Commission	
John Shenot	Regulatory Assistance Project	Tom Stanton	Nat'l Regulatory Research Institute	
Julia Dumaine	CT Dept of Energy and Env. Protection	Wally Nixon	Arkansas Public Service Commission	

Project will Build on Past & Ongoing Projects

State BCA DER efforts (NY, CA, MN, etc.)

A Framework for Integrated Analysis of Distributed Energy Resources: Guide for States, LBNL+DOE 2018

• A framework for states to plan for and assess DER utility and non-utility impacts at the individual, multiple, and integrated levels.

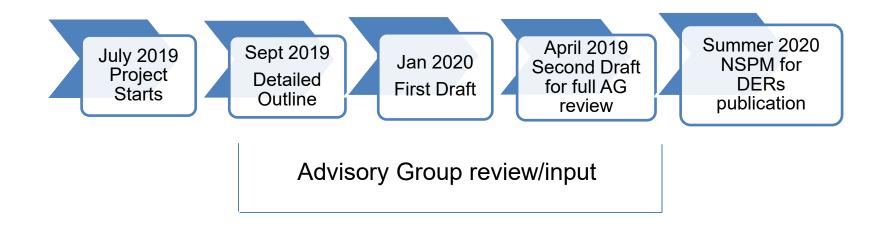
NARUC-NASEO Task Force Comprehensive Electricity Planning 2019

• A task force on comprehensive electricity planning to align distribution system and resource planning processes.

NASEO-NARUC Grid-Interactive Efficiency Buildings (GEBs) 2018

• Role of Grid-interactive Efficient Buildings in grid-mod efforts

Integrated Distribution Grid: Decision Guide, vol iii (DSPx), 2017


• DOE 2017: A review of what is necessary to develop a grid with integrated DERs and five common BCA test overviews.

EPRI, 2014 + other Integrated Grid Projects

• A framework for DER-grid integration planning, including a BCA methodology which considers Distribution System, Bulk System, Customer, and Societal Impacts.

Project Schedule

NSPM for DERs – Scope (1)

- Overview
 - DERs covered in manual
 - Different levels of DER Benefit-Cost Analysis
- Fundamental BCA Principles, Concepts and Practices
 - Builds on principles from NSPM for EE
 - New principles: consistent BCA treatment across DERs; avoid double counting
- Cost-Effectiveness and Rate Impacts
 - Differentiating purpose/application across these areas
- Developing Benefit-Cost Analysis Tests
 - Traditional tests
 - Developing Primary Cost-Effectiveness Test
 - Use of Secondary Tests

Steps for Conducting DER Benefit-Cost Analyses

Three Tiers of DER Analyses - Scope (2)

- 1. Single-DER analysis; where one type of DER is assessed relative to a fixed (i.e., static) set of alternative resources.
- 2. Multiple-DER analysis; where multiple DERs are assessed and optimized relative to a fixed set of alternative resources.
- 3. Integrated-DER analysis; where all electric resources, both distributed and utility-scale, are optimized.

NSPM for DERs will focus on #1-2

NSPM for DERs – Scope (3)

DER Costs and Benefits

- Utility System Impacts
- Gas Utility and Other Fuel System Impacts
- Host Customer Impacts
- Societal Impacts

Illustrative Example:

Utility System Impacts

Туре	Utility System Impact	EE	DR	DG	Storage	V2G EVs	Other EVs & Bldg Electric- fication
Generation	Energy Generation	В	B/C	В	B/C	B/C	С
	Generation Capacity	В	В	В	B/C	В	С
	Environmental Compliance	В	B/C	В	B/C	B/C	С
	RPS Compliance	В	B/C	В	B/C	С	С
	Market Price Suppression	В	В	В	B/C	С	С
	Ancillary Services	-	В	B/C	B/C	В	В
Transmission	Transmission Capacity	В	В	В	B/C	В	С
	Transmission Line Losses	В	В	В	B/C	С	С
Distribution	Distribution Capacity	В	В	B/C	B/C	В	С
	Distribution Line Losses	В	В	В	B/C	C	С
	Distribution O&M	В	В	B/C	B/C	С	С
	Distribution Voltage	-	В	B/C	B/C	С	С
	Interconnection Costs	-	B/C	B/C	С	-	-
General	Utility portion of DER costs	С	С	С	С	C	С
	Program Administration Costs	С	С	С	С	С	С
	Utility Incentives	С	С	С	С	С	С
	Credit and Collection Costs	В	В	В	В	В	В
	Risk	В	В	B/C	B/C	B/C	B/C
	Reliability	В	В	B/C	В	В	C
	Resilience	В	В	В	В	В	-
	Enable other DERs	В	В	N/A	N/A	В	В

NSPM for DERs – Scope (4)

Additional DER Cost and Benefit Considerations

Considerations that span across different types of costs/benefits

- Temporal Impacts
- Locational Impacts
- Interactive Effects
- Behind-the-Meter Versus Front-of-the-Meter Considerations
- Load Reduction Versus Electricity Injection
- Accounting for Revenues from Wholesale Markets
- Impact of Each DER Too Small to Make a Difference
- Distribution Impacts Could Increase or Reduce Costs

NSPM for DERs – Scope (5) Technology/Resource Specific Chapters

Energy Efficiency Resources

- Costs and Benefits of Energy Efficiency Resources
- Key factors that Affect Impacts
- Common Challenges in Estimating Costs and Benefits

Demand Response Resources

- Costs and Benefits of Demand Response Resources
- Key factors that Affect Impacts
- Common Challenges in Estimating Costs and Benefits

Distributed Generation Resources

- Costs and Benefits of Distributed Generation Resources
- Key factors that Affect Impacts
- Common Challenges in Estimating Costs and Benefits

Distributed Storage Resources

- Costs and Benefits of Distributed Storage Resources
- Key factors that Affect Impacts
- Common Challenges in Estimating Costs and Benefits

Electrification

- Costs and Benefits of Electrification
- Key factors that Affect Impacts
- Common Challenges in Estimating Costs and Benefits

Guidance to define each DER, discuss costs and benefits, and key issues and challenges.

NSPM for DERs – Scope (6) Multi-DER Chapters

Multiple DER Types per Site

- Costs and Benefits
- BCA Issues and Challenges
- Use Cases / Case Studies

Multiple DER Types in a Geographic Area (Non-Wires Solutions)

- NWS Costs and Benefits Summary
- BCA Issues and Challenges
- Use Cases / Case Studies

System-Wide DER Portfolios

- Consistent Cost-Effectiveness Tests
- Enabling other DERs and Interactive Effects
- DER Planning Objectives
- Multiple Tests
- Designing and Optimizing DER Portfolios
- Use Cases / Case Studies

Integrated Distribution Planning

- Components of Integrated Distribution Planning
- Early Lessons Learned
- BCA Issues and Challenges
- Use Cases / Case Studies

NSPM for DERs - Appendices

Examples (still TBD):

Traditional Cost-Effectiveness Tests Presenting BCA Results Cost-Effectiveness vs Rate Impact Analysis Approaches to Account for All Relevant, Material Impacts Treatment of Transfer Payments

How NSPM for EE fits into the NSPM for DERs

Part I – Common BCA Framework (Ch 1-3)	Builds on NSPM for EE framework			
Part II – DER Costs & Benefits and Cross-cutting Issues (Ch 4-5)	Includes EE Cost and benefits			
Part III – BCA for Specific DER Types (Ch 6-10)	Chapter 6- EE (incorporates key concepts and issues from NSPM for EE			
Part IV – BCA for Multi-DER Types* (Ch 11-13)	Includes multi-DER examples with EE			
Part V – Appendices	Incorporates key appendices form the NSPM for EE: List			

* With use case examples

For More Info...

Stay informed with the NSPM Quarterly Newsletter:

https://nationalefficiencyscreening.org/national-standard-practicemanual/news/

To download the NSPM for EE and find supporting Resources visit: <u>http://www.nationalefficiencyscreening.org/</u>

Questions? Email <u>NSPM@nationalefficiencyscreening.org</u>